Elevated Neuronal Excitability Due to Modulation of the Voltage-Gated Sodium Channel Nav1.6 by Aβ1−42

نویسندگان

  • Xi Wang
  • Xiao-Gang Zhang
  • Ting-Ting Zhou
  • Na Li
  • Chun-Yan Jang
  • Zhi-Cheng Xiao
  • Quan-Hong Ma
  • Shao Li
چکیده

Aberrant increases in neuronal network excitability may contribute to the cognitive deficits in Alzheimer's disease (AD). However, the mechanisms underlying hyperexcitability are not fully understood. Such overexcitation of neuronal networks has been detected in the brains of APP/PS1 mice. In the present study, using current-clamp recording techniques, we observed that 12 days in vitro (DIV) primary cultured pyramidal neurons from P0 APP/PS1 mice exhibited a more prominent action potential burst and a lower threshold than WT littermates. Moreover, after treatment with Aβ1-42 peptide, 12 DIV primary cultured neurons showed similar changes, to a greater degree than in controls. Voltage-clamp recordings revealed that the voltage-dependent sodium current density of neurons incubated with Aβ1-42 was significantly increased, without change in the voltage-dependent sodium channel kinetic characteristics. Immunohistochemistry and western blot results showed that, after treatment with Aβ1-42, expressions of Nav and Nav1.6 subtype increased in cultured neurons or APP/PS1 brains compared to control groups. The intrinsic neuronal hyperexcitability of APP/PS1 mice might thus be due to an increased expression of voltage-dependent sodium channels induced by Aβ1-42. These results may illuminate the mechanism of aberrant neuronal networks in AD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability

The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 yea...

متن کامل

Voltage-gated sodium channel Nav1.6 is modulated by p38 mitogen-activated protein kinase.

Nav1.6 is the major sodium channel isoform at nodes of Ranvier in myelinated axons and, additionally, is distributed along unmyelinated C-fibers of sensory neurons. Thus, modulation of the sodium current produced by Nav1.6 might significantly impact axonal conduction. Mitogen-activated protein kinases (MAPKs) are expressed in neurons and are activated after injury, for example, after sciatic ne...

متن کامل

Ankyrin-G regulates inactivation gating of the neuronal sodium channel, Nav1.6.

Ankyrin-G, a modular protein, plays a critical role in clustering voltage-gated sodium channels (Nav channels) in nodes of Ranvier and initial segments of mammalian neurons. However, direct effects of ankyrin-G on electrophysiological properties of Nav channels remain elusive. In this study, we explored whether ankyrin-G has a role in modifying gating properties of the neuronal Nav1.6 channel t...

متن کامل

Calmodulin binds to the C terminus of sodium channels Nav1.4 and Nav1.6 and differentially modulates their functional properties.

Modulation of voltage-gated sodium channels (VGSC) can have a major impact on cell excitability. Analysis of calmodulin (CaM) binding to GST-fusion proteins containing the C-terminal domains of Nav1.1-Nav1.9 indicates that some of the tetrodotoxin-sensitive VGSC isoforms, including NaV1.4 and NaV1.6, are able to bind CaM in a calcium-independent manner. Here we demonstrate that association with...

متن کامل

Human Nav1.6 Channels Generate Larger Resurgent Currents than Human Nav1.1 Channels, but the Navβ4 Peptide Does Not Protect Either Isoform from Use-Dependent Reduction

Voltage-gated sodium channels are responsible for the initiation and propagation of action potentials (APs). Two brain isoforms, Nav1.1 and Nav1.6, have very distinct cellular and subcellular expression. Specifically, Nav1.1 is predominantly expressed in the soma and proximal axon initial segment of fast-spiking GABAergic neurons, while Nav1.6 is found at the distal axon initial segment and nod...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016